

Introduction
Corn stover availability estimates
64 to 91 million dry t/y (Iowa State University, 1993).
82 million dry t/y (Kadam and McMillian, 2003).
153 million dry t/y (Glassner et al., 1999).
216 million dry t/y for 2001 (Sokhansanj et al., 2002).
Feedstock demand for biorefineries (Sokhansanj and Wright 2002)
172 million dry t/y by 2010
508 million t/y by 2020 .
Wide variation in estimates exists.
University of Tennesse

Study justification

Moisture content is a critical factor for: Efficient collection, processing, transportation, and storage (Edens et al., 2002).

- High moisture problems:
 - Machine harvest difficulty Affects processing equipment selection Increases transportation cost

 - Increases spoilage rate Presents safety hazards when moldy (Edens et al., 2002; Jenkins and Sumner, 1986).

Stalks constitute the major portion of stover biomass (Pordesimo et al., 2004).

Standing stalks would provide a baseline of vertical distribution and exact mass and moisture status of crop components.

University of Tenness

University of Tennesse

University of Tenness

Materials and Methods Measured environmental condition

Table 1. Measured environmental Knoxville during 11 Augus	easured environmental conditions and calculated evapotranspiration valu noxville during 11 August to 24 October 2003				
Variable	Mean	SD ^[a]	Minimum	Maximum	
Days after sowing (DAS)	122.32	21.64	83	157	
Soil moisture (% w.b.)	11.49	2.80	2.35	19.18	
Soil temperature (°C)	21.42	3.85	13	29	
Solar radiation (M J/m ² ·s)	16.83	5.32	2.55	23.58	
Rainfall (mm/day)	1.10	5.47	0.0	37.08	
Mean air temperature (°C)	19.08	5.30	9.25	28.73	
Maximum air temperature (°C)	26.30	4.73	14.5	33.4	
Minimum air temperature (°C)	14.20	5.87	2.1	23.2	
Air relative humidity (%)	79.02	7.49	57.01	95.9	
Wind direction (°N)	139.29	40.45	62.13	243.8	
Wind speed (m/s)	0.88	0.44	0.392	2.722	
ET。FAO56-PM ^[0] (mm/day)	2.80	1.00	0.67	4.33	
(a) SD = Standard de viation	^(b) Evapotra	inspiration by FA	O-Penman-Montei	th method	

Four rainfall events with 16.7, 13.2, 10.7, and 37.1 mm were recorded on 89, 103, 118 and 125 DAS, respectively.

Materials and Methods

Data analysis

PROC CORR of SAS (2002) :

Correlation of different independent variables (vs.) Wet mass, dry matter, and moisture content.

PROC REG of SAS (2002) :

Polynomial equations as a function of DAS and section numbers (vs.) Wet mass, dry matter, and moisture content.

University of Tennesse

2

Table 2. Wet mass and moisture content polynomial regression equations	of	
above-ground components of standing corn plant as a function of	DAS	
Equation ^[a]	R ²	RMSE ^[b]
Wet mass (g)		
Whole plant = -36259.0 + 1305.88DAS - 16.54DAS ² + 9.02E-02DAS ³ - 1.80E-04DAS ⁴	0.9682	57.00
Stalk = -10728.0 + 388.00DAS - 4.78DAS ² + 2.47E-02DAS ³ - 4.62E-05DAS ⁴	0.9724	31.12
Leaf = -12135.0 + 450.62DAS - 5.99DAS ² + 3.44E-02DAS ³ - 7.21E-05DAS ⁴	0.9705	11.27
Whole ear = -12068.0 + 419.04DAS - 5.14DAS ² + 2.74E-02DAS ³ - 5.37E-05DAS ⁴	0.8111	30.83
Husk = -550.3 + 37.98DAS - 0.65DAS ² + 4.35E-03DAS ³ - 1.00E-05DAS ⁴	0.9639	5.49
Stover ^[0] = -24383.0 + 913.03DAS - 11.91DAS ² + 6.62E-02DAS ³ - 1.34E-04DAS ⁴	0.9860	33.27
Stalk dry matter (g) = -2639.5 + 93.33DAS - 1.16DAS ² + 6.19E-03DAS ³ - 1.21E-05DAS ⁴	0.8422	7.26
Stover to ear ratio [d] = 2.5 + 0.24DAS - 0.005DAS ² + 3.66E-05DAS ³ - 8.26E-08DAS ⁴	0.9850	0.09
Moisture content (% w.b.)		
Stalk = 1336.8 - 50.57DAS + 0.74DAS ² - 4.72E-03DAS ³ + 1.08E-05DAS ⁴	0.9624	5.49
Leaf = -6680.4 + 232.36DAS - 2.92DAS ² + 1.59E-02DAS ³ - 3.18E-05DAS ⁴	0.9493	6.62
Husk = -3256.2 + 125.29DAS - 1.70DAS ² + 9.84E-03DAS ³ - 2.07E-05DAS ⁴	0.9597	5.33
Grain = 209.5 - 1.86DAS - 0.01DAS ² + 1.24E-04DAS ³ - 3.35E-07DAS ⁴	0.9970	0.75
[a] Means of the 6 plant samples per sampling day were used as the input data, and DAS varies fi	rom 83 to 157	
^[b] RMSE is root mean square error ^[c] Stover mass is whole plant mass less the de	husked ears	
[d] Wet mass ratio of stover and dehusked ear.		

Variables	Pearson correlation coefficients (r) and p values					
	Weti	nass(q) p	Dry m	atter (g)	Moisture content	(% w.b.) p
DAS	-0.547	<.0001	-0.256	<.0001	-0.802	<.0001
Replication	0.050	0.0033	0.030	0.0812	0.060	0.0004
Sample	-0.066	0.0001	-0.025	0.1342	-0.092	<.0001
Stalk section	-0.624	<.0001	-0.887	<.0001	-0.342	<.0001
Wet mass (g)	1.000		0.840	<.0001	0.719	<.0001
Dry matter (g)	0.840	<.0001	1.000		0.512	<.0001
Moisture present (g)	0.993	<.0001	0.771	<.0001	0.734	<.0001
Moisture content (% w.b.)	0.719	<.0001	0.512	<.0001	1.000	
Soil moisture (% w.b.)	-0.255	<.0001	-0.148	<.0001	-0.298	<.0001
Soil temperature ("C)	0.408	<.0001	0.192	<.0001	0.612	<.0001
Solar radiation (MJ/m ² s)	0.241	<.0001	0.113	<.0001	0.344	<.0001
Rainfall (mm/day)	-0.042	0.0136	-0.033	0.0493	0.004	0.8193
Air temperature (°C)	0.491	<.0001	0.231	<.0001	0.722	<.0001
Air relative humidity (%)	0.086	<.0001	0.039	0.0206	0.184	<.0001
Wind direction (°N)	0.030	0.0829	0.018	0.2823	0.060	0.0004
Wing speed (m/s)	-0.163	<.0001	-0.091	<.0001	-0.201	<.0001
E re r AO JO-P M (mm/day)	V.991	\$.0001	0.209	~.0001	0.050	<.0001

Iultiple regression results Table 5. Overall mass and moisture multiple regression relationships of stalk section using and section number				
Wet mass (g) = -92.62 + 7.95DAS - 8.79E-02DAS ² + 2.67E-04DAS ³ - 30.83S + 3.55E-01 <i>S</i> ² + 0.25DAS×S -5.24E-04DAS ² ×S	0.9485	5.45		
Dry matter (g) = -11.82 + 1.02DAS - 1.06E -02DAS ² + 3.27E -05DAS ³ - 3.55S + 7.41E-02S ² + 0.02DAS×S - 6.77E -05DAS ² ×S	0.9645	0.80		
Moisture = -926.01 + 25.05DAS - 1.97E-01DAS ² + 4.76E-4DAS ³ content (% w.b.) + 8.79S - 4.01E-01S ² - 0.83DAS×S + 3.52E-3DAS ² ×S	0.9281	7.91		
¹⁾ RMSE = Root mean square error; DAS varies from 83 to 157				

University of Tennesse

Conclusions

Conclusions

Above-ground stover components

- 1. Stalk component dominated the wet mass followed by leaf and husk.
- 2. Stover to dehusked ear wet mass ratio varied from 2.85 to 0.47 with an average of 1.2.
- Mass and moisture reduction exhibited two trends:
 Rapid reduction during the first zone and
 <u>Stabilization during the second zone.</u>
- 4. Fourth order polynomial equation as a function of DAS adequately expressed the mass and moisture of components.

University of Tenness

Stalk sections

- 5. Stalk section below the typical ear level had increased wet mass and dry matter. Possibly acted as material storage to the corn ear.
- 6. Dry matter did not show much reduction throughout the experiment.
- Wet mass, dry matter, and moisture content displayed two trends of reduction.
 Rapid reduction and 2. Gradual stabilization.
- Sections below the typical ear level (1-4) dominated the dry matter and the moisture content compared to above sections (5-14). Wet mass in 1-4 stalk sections = 65.95±3.48% Dry matter in 1-4 stalk sections = 60.61±3.64%.
- Major reduction of wet mass and dry matter occurred among 1-6 sections. Maximum reduction was between the 1st and the 2nd sections.
- 10. Sections lost moisture collectively in rapid manner around the normal harvest period and finally stabilized.

University of Tenness

Conclusions

Developed regression equations

- Individual stalk section fourth order polynomial equations with DAS gave good performance: Wet mass (P2 = 0.95+0.02)
 - Wet mass (R² = 0.95±0.02) Dry matter (R² = 0.84±0.11) Moisture content (R² = 0.96±0.01).
- 14. Overall equations involving DAS and section number produced comparable performance ($R^2 > 0.93$) to the individual equations.

University of Tennesse

Acknowledgements

Bioenergy Feedstock Development Program of the Oak Ridge National Laboratory

Bobby R McKee Hong Y Jeon Gnanambiga Lalida Sahiram Wesley C Wright Michael R Williams Manlu Yu

University of Tennesse

